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RM estimator to chromosome 2B in wheat in a multi-parent 
population segregating for the Sr36 introgression, a known 
transmission distorter. The resulting map contains over 
700 markers, and is consistent with maps constructed from 
crosses which do not exhibit segregation distortion.

List of symbols
M1, M2, M3	� Genetic markers
Ms	� Segregation distortion locus (SDL)
r12, r23, r13	� Recombination fractions between  

markers M1, M2 and M3

r1s, rs3	� Recombination fractions between Ms and 
markers M1, M3

gy(t)	� Expected proportion of allele y at M2

nxyz	� Number of lines with multilocus genotype 
x, y, z at markers M1, M2, M3

nx.z	� Number of lines with multilocus genotype 
x, z at markers M1, M3

Pd	� Distorted probability model
Pd,f 	� Distorted probability model for MAGIC8 

population, assuming funnel f

Pu,f 	� Undistorted probability model for MAGIC8 
population, assuming funnel f

Pu	� Undistorted probability model
pf 	� Proportion of lines from funnel f  in a 

MAGIC8 population
pxyzf 	� Proportion of lines from funnel f   

having multi-locus genotype x, y, z at 
marker M1, M2, M3

p.y.f 	� Proportion of lines from funnel f  having 
genotype y at marker M2

p̂.y.	� Empirical proportion of lines having  
genotype y at M2

p̂x.z	� Empirical proportion of lines having  
multi-locus genotype x, z at M1, M3

Abstract 
Key message  We present a novel estimator for map 
construction in the presence of segregation distortion 
which is highly computationally efficient. For multi-
parental designs this estimator outperforms methods 
that do not account for segregation distortion, at no 
extra computational cost.
Abstract   Inclusion of genetic markers exhibiting segre-
gation distortion in a linkage map can result in biased esti-
mates of genetic distance and distortion of map positions. 
Removal of distorted markers is hence a typical filtering cri-
terion; however, this may result in exclusion of biologically 
interesting regions of the genome such as introgressions and 
translocations. Estimation of additional parameters charac-
terizing the distortion is computationally slow, as it relies on 
estimation via the Expectation Maximization algorithm or 
a higher dimensional numerical optimisation. We propose a 
robust M-estimator (RM) capable of handling tens of thou-
sands of distorted markers from a single linkage group. We 
show via simulation that for multi-parental designs the RM 
estimator can perform much better than uncorrected esti-
mation, at no extra computational cost. We then apply the 
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p̂xyz	� Empirical proportion of lines having multi-
locus genotype x, y, z at M1, M2, M3

pxyz(r12, r23)	� Probability of multi-locus genotype x, y, z at 
markers M1, M2, M3, with given recombina-
tion fractions and no distortion

p.y.	� Proportion of lines having genotype y at M2

G	� Number of underlying genotypes at each 
marker

F	� Set of all funnels for the MAGIC8 
population

|F|	� Number of funnels for the MAGIC8 
population

Introduction

Segregation distortion refers to the inheritance of alleles 
among progeny in a different proportion from that implied 
by Mendelian inheritance. Such distortion is commonly 
detected in major crop species, with a variety of underly-
ing causes, including natural and artificial selection (for 
a review of common factors see Liu et  al. 2010). While 
regions of distortion may thus be of biological interest, 
they are also problematic in genetic analysis, as they do not 
conform to standard assumptions about inheritance. Hence, 
regions of the genome displaying segregation distortion are 
often discarded during preprocessing of genotypes (Xu and 
Hu 2009) to avoid bias in genetic map construction and 
QTL mapping.

Discarding these regions not only removes biologically 
interesting segments of the genome (Wang et al. 2005; Xu 
2008), but also may drastically reduce marker density. Pre-
vious work has attempted to account for segregation dis-
tortion, either by robust estimation of recombination frac-
tion or parametrization of the process itself (Lorieux et al. 
1995a, b; Cheng et  al. 1996, 1998). However, the param-
eterization approach has a significant computational burden 
and robust estimation is difficult for designs where individ-
ual markers are highly non-informative.

The effect of segregation distortion varies depending 
on experimental design and genotyping platform. Lorieux 
et al. (1995a, b) showed that distortion can bias estimates 
of recombination fraction in F2 populations, although 
estimates between pairs of codominant markers are less 
affected than dominant markers. In contrast, Hackett and 
Broadfoot (2003) examined linkage map construction via 
simulation of doubled-haploid (DH) populations and found 
the effect of distortion to be small. However, they note that 
their experimental design is completely robust against dis-
tortion introduced by a single locus, a feature not shared by 
F2 populations with dominant markers.

Multi-parental designs were introduced as alternatives 
to biparental crosses for mapping populations (Cavanagh 

et al. 2008). Multiparent populations have been created in 
a number of crops including wheat and rice (Huang et al. 
2012; Bandillo et  al. 2013), as well as the model plant 
Arabidopsis thaliana (Kover et  al. 2009). While these 
have numerous advantages for map construction including 
higher genetic diversity and resolution, they are also more 
vulnerable to the effects of segregation distortion. Bial-
lelic markers are unable to distinguish between all of the 
parents, and hence these populations are subject to a more 
extreme version of the bias observed in F2 populations 
with dominant markers. Additionally, the inclusion of more 
parents increases the potential number of segregation dis-
tortion loci (SDLs) segregating in the population.

We present here a computationally efficient estimator 
of recombination fractions in the presence of segregation 
distortion. The proposed estimator is based on the theory 
of M-estimators (Huber 1964), an important class of robust 
estimators. Robust estimators are intended to be reliable 
and reasonably efficient even when modelling assumptions 
are incorrect, as in the case of segregation distortion.

We focus on estimation for the F2 population as it is 
extremely common, and for the Multiparent Advanced Gen-
eration InterCross (MAGIC) population as it is extremely 
vulnerable to the effects of segregation distortion. We 
model the segregation distortion by dividing the population 
on the basis of the genotype at the SDL. The resulting sub-
populations are genetically different (Farr et al. 2011), but 
can be weighted and recombined to produce an estimator 
that incorporates data from a marker closely linked to the 
SDL. We characterize its behavior through simulations, and 
apply it to a MAGIC population with a known SDL to con-
struct a map for a chromosome containing several hundred 
markers.

Methods and materials

Statistical model

Many map construction algorithms are based on estimates 
of recombination fractions between all markers. Any bias 
in these estimates, such as that due to segregation distor-
tion, will lead to bias in the final genetic map. Hence we 
focus our attention on the estimation of recombination 
fractions in the hopes of reducing or eliminating this bias. 
For two markers M1 and M3, we would like to estimate the 
recombination fraction r13 between them, where bias may 
be introduced by the presence of an additional SDL Ms 
lying between M1 and M3.

We parametrize our model by the recombination frac-
tions r1s and rs3, as well as the parameter t which measures 
the strength of distortion due to the SDL. While Ms is not 
necessarily genotyped, we assume that there is a genotyped 
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marker M2 which lies between M1 and M3, and is tightly 
linked to Ms. As our model of segregation distortion will 
depend on the genetic distances between the flanking mark-
ers M1 and M3 and the SDL, the fact that M2 is close to Ms 
means that we should be able to replace r1s by r12 and rs3 by 
r23 with negligible error.

We use the term genotype to refer to the pair of alleles 
inherited at each locus. For all three loci, and indeed for all 
markers genotyped in the given population, we assume that 
there are G genotypes observed, and that without segrega-
tion distortion each progeny has probability 1

G
 of carrying 

each genotype at each marker.
We assume a lack of crossover interference, so that 

crossovers follow a Poisson process and the Haldane map 
function can be applied. We refer to the undistorted prob-
ability model as Pu, and in particular, the probability of a 
multi-locus genotype x, y, z is

Without crossover interference these probabilities depend 
only on the recombination fractions, and they are well 
documented for common experimental designs (Wu et  al. 
2007; Teuscher and Broman 2007). For convenience, we 
will abbreviate pxyz(r12, r23) as pxyz.

In order to specify the distorted model Pd, we intro-
duce a parametrized distribution gy(t) characterizing the 
distortion. Here y is one of G different genotypes, and 
t  is the parameter measuring the strength of distortion. 
Typically t = 1 corresponds to the case of no distortion. 
Under this model, the probability of a multi-locus geno-
type x, y, z is

Cheng et al. (1996) give examples of gy for gametic and 
zygotic segregation distortion which we will describe in 
more detail later. Our model has the property that

Further, for all genotypes x, y and z,

Applying Eqs. 2 and 4 together gives

The genotypes at M1 and M3 are modelled by a mixture dis-
tribution with G components and weights gy(t). The only 
difference between the distorted and undistorted models is 

pxyz(r12, r23)
def
= Pu(M1 = x, M2 = y, M3 = z).

(1)Pd(M1 = x, M2 = y, M3 = z) = Gpxyzgy(t).

(2)Pd(M2 = y) = gy(t)G
∑

x,z

pxyz

(3)= gy(t)GPu(M2 = y) = gy(t).

(4)

Pd(M1 = x, M3 = z|M2 = y) = Pu(M1 = x, M3 = z|M2 = y).

(5)

Pd(M1 = x, M3 = z) =
∑

y

Pu(M1 = x, M3 = z|M2 = y)gy(t).

these weights, which are all fixed in the undistorted model 
and vary according to the unknown parameter t in the dis-
torted model.

In practice, for a given triplet of markers we will observe 
some empirical proportions of lines with multi-locus geno-
types x, y and z. We will denote these proportions as p̂xyz, 
calculated by dividing the number of observed genotypes 
nxyz by the total number of lines n. Similarly, the marginal 
proportions at individual markers can be denoted with dots 
in place of the genotypes at other markers, so that p̂x.. is 
the proportion observed to have genotype x for M1. These 
empirical proportions will always be assumed to include 
the effects of segregation distortion.

Our choice of Eq. 1 as statistical model makes mini-
mal changes to the standard model, attempting to incorpo-
rate the distortion parameters in a manner which is easily 
interpretable in terms of the inflation of certain genotype 
frequencies. Conveniently, this allows a ready interpreta-
tion of recombination fractions which may be difficult with 
more complex models.

F2 population

Consider an F2 population of n individuals with three 
codominant markers M1, M2 and M3 genotyped. At each 
marker we denote the two homozygotes by a and b, and 
the heterozygote by h. Note that according to the notation 
defined above, G = 4 even though we only consider three 
genotypes, as we are collapsing the two equally probable 
phased heterozygotes ab and ba into a single category which 
is twice as probable. We assume that these three markers 
are in the correct order. We are interested in estimating the 
recombination fraction between M1 and M3, assuming that 
M2 is the SDL and that any apparent segregation distortion 
at M1 or M3 is due only to their linkage with M2.

In order to estimate recombination fractions under the 
distorted model, we focus on the empirical values of the 
quantities in the weighted sum in Eq. 5. We decompose 
p̂x.z into three parts and weight each part by the ratio of the 
marginal probabilities of the SDL genotype under the undis-
torted and distorted models. This defines the nine values

Next we replace the denominators by their expectations, 
and collect the error from doing so in the remainder term 
ǫxz.

(6)sxz = p̂xaz

1
4

p̂.a.
+ p̂xhz

1
2

p̂.h.

+ p̂xbz

1
4

p̂.b.

.

(7)sxz =
p̂xaz

4p.a.
+

p̂xhz

2p.h.

+
p̂xbz

4p.b.

+ ǫxz

(8)
def
= txz + ǫxz.
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The values s = {sxz} are functions of the 27 random vari-
ables n = {nxyz} which are counts of the observed multi-
locus genotypes. These have a joint multinomial distribu-
tion, making the distribution of s difficult to determine. 
However, as shown in “Proof of Eq. 9” in Appendix their 
expectations are

The first term is a function only of r13, deriving from the 
standard undistorted model for an F2 population, and fully 
detailed in Wu et  al. (2007). The second term is an addi-
tional error whose distribution is analytically intractable. 
However, we examine its distribution through simulation 
in “Simulation of error terms” in Appendix. Assuming 
the term ǫxz in Eq. 7 is small, we can estimate r13 based 
on the empirical weighted sums in Eq. 6. The probability 
mass function f (n; r13) under the undistorted model is a 
multinomial and straightforward to characterize (Wu et al. 
2007). From Eq. 9, we know that

We take as our estimator the robust M-estimator (RM)

where we substitute ns for n.
The M-estimator (maximum likelihood-type estimator) 

was originally proposed by Huber (1964). If x1, . . . , xn are 
an independent and identically distributed sample from the 
density f (x; θ), then any estimator θ̂  of the form

is said to be an M-estimator. If ρ(x, θ) = − log f (x; θ) 
then the usual maximum likelihood estimator (MLE) is 
obtained. The sample mean can be recovered by setting

Other common estimators that are also M-estimators 
include the sample median and least squares regression 
estimator. Under suitable regularity conditions such esti-
mates converges to arg minθ E[ρ(X, θ)]. Further theory 
relating to M-estimators can be found in Hampel et  al. 
(2005) and Huber (2009).

We note that the M-estimator described here has some 
similarity to the Horvitz–Thompson estimator (1952) com-
monly used in survey analyses. Essentially, we stratify by 
the marker allele at the SDL and weight our data by the 
prevalence of each allele to reduce the influence of segrega-
tion distortion on our estimate of r13.

(9)E(sxz) = Pu(M1 = x, M3 = z) + E(ǫxz).

E(sxz) ≃
Eu(nx.z)

n
.

(10)
r̂13 = argmax

0≤r13≤
1
2

f (ns, r13),

θ̂ = arg min
θ

(
n∑

i=1

ρ(xi, θ)

)

ρ(x, θ) =
1

2
(x − θ)2.

For simplicity we have presented our estimator with 
reference to codominant markers, but the extension to the 
case where the markers are all dominant is straightforward. 
If a, b and c are 0 or 1 then let p̂abc denote the empirical 
proportion of progeny lines which had multi-locus marker 
genotype a, b, c. Let pabc be the corresponding theoretical 
proportion. Assume that founder b is dominant at marker 
M2. Then the value of sxz corresponding to M1 = 0 and 
M3 = 1 is

If founder a was dominant at marker M2, then we would 
instead define

We can similarly define the values s00, s10 and s11. If these 
are written as a vector sdom then we can construct the esti-
mator as in Eq. 10 by replacing s by sdom, and the prob-
ability mass function f  by the corresponding version for 
dominant markers.

Note that for two dominant markers M1 and M3, even 
the MLE of r13 has no analytic form and must be com-
puted numerically. Although the bias of the MLE is 
asymptotically zero, for a finite population size the bias 
will be non-zero and cannot be computed explicitly. 
Similarly, for our estimator we can only characterize the 
distribution of the bias through simulation rather than 
analytically.

MAGIC population

We can use the same type of estimator to estimate recom-
bination fractions in MAGIC populations. We now con-
sider an eight-parent MAGIC population of n inbred indi-
viduals with three biallelic markers M1, M2 and M3. Since 
the progeny are inbred lines, all genotypes are homozy-
gous and we can represent them in terms of single alleles. 
Marker genotypes are coded as 0 or 1, and the underlying 
founder genotypes as {A, B, C, D, E, F, G, H}. Note that if 
we wish to apply the same idea as previously we need to 
be able to estimate the pattern and strength of segregation 
distortion. The simplest situation where this is possible 
occurs when

1.	 In the distorted region all founders are equally rep-
resented in the progeny, except for a single founder 
(without loss of generality assumed to be A) which is 
over- or under-represented.

2.	 There is a biallelic marker in the distorted region for 
which founder A carries the 1 allele, and the other 
founders carry the 0 allele.

(11)s01 =
p̂001

4p̂.0.
+

3p̂011

4p̂.1.
.

(12)s01 =
3p̂001

4p̂.0.
+

p̂011

4p̂.1.
.
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Fortunately this situation is believed to occur often in 
practice. In particular, translocations are common in major 
crop plants, are commonly associated with segregation dis-
tortion and the resulting populations generally have mark-
ers that uniquely identify lines carrying the translocation 
(Tsilo et  al. 2008; Farr et  al. 2011; Gill et  al. 2011; Xie 
et al. 2012).

In the MAGIC case we have the additional complica-
tion that different orderings of the founder lines in the 
first generation cross (known as funnels) result in popu-
lations which are genetically distinct. Typically a large 
number of different funnels are used in a single popu-
lation (Bandillo et al. 2013), and probabilities of inher-
iting haplotypes from different founders vary among 
funnels (Broman 2005). Let F be the collection of all 
funnels, p̂xyzf  be the proportion of lines from funnel f  
having genotype x, y and z at the markers of interest, and 
pf  be the proportion of lines from funnel f . Let Pf ,u and 
Pf ,d refer to the probability models for lines drawn from 
funnel f , under the undistorted and distorted models 
respectively.

Similar to the F2 population, we decompose p̂x.z into 
eight components and reweight each component. Unlike 
the F2 population we must also decompose by funnel. This 
results in the 64 values of the form

Replacing the denominators with their expectations and 
accumulating the error in ǫxz gives

Excluding the error term, the expectation is

 It can be shown (see “Proof of Eq. 14” in Appendix) that if 
pf = |F|−1, so that an equal proportion of lines come from 
each funnel, then it is approximately true that

sxz =
�

f ∈F

pf



 p̂xAzf

8p̂.A.f

+
�

y �=A

7p̂xyzf

8
�
1 − p̂.A.f

�



.

sxz =
�

f ∈F

pf



 p̂xAzf

8p.A.f

+
�

y �=A

7p̂xyzf

8
�
1 − p.A.f

�



 + ǫxz

def
= txz + ǫxz.

(13)

E(txz) =
�

f ∈F

pf

�
1

8
Pf ,d(M1 = x, M3 = z|M2 = A)

+
�

y �=A

7pxyzf

8
�
1 − p.A.f

�





=
�

f ∈F

pf

�
Pf ,u(M1 = x, M2 = A, M3 = z)

+
7

8
Pf ,d(M1 = x, M3 = z|M2 �= A)

�
.

This approximation is equally valid when M2 no longer lies 
between M1 and M3, and is essentially the same result as 
in Eq. 9. Hence as in the F2 case, we expect the value of 
E(sxz) to be primarily affected by variation in r13 rather than 
any of the other parameters, and again we can construct the 
M-estimator in a similar manner to that defined in Eq. 10.

Simulation studies

We performed three types of simulations to characterize the 
performance of the RM for F2 and MAGIC populations. 
First, we considered the distribution of the error term for 
an F2 population, to demonstrate that its magnitude was 
sufficiently small for the approximation to be reasonable. 
Second, we compared the bias and variability of the RM 
estimator in an F2 population with those for the EM esti-
mator (Cheng et  al. 1996) and the uncorrected estimator. 
Third, we compared the bias of the RM estimator to that 
of the uncorrected estimator for a MAGIC population. The 
simulations of error are described further in “Simulation of 
error terms” in Appendix.

For the F2 population three dominant markers M1, M2 
and M3 were simulated, with M2 being the SDL. The mark-
ers were assumed to be in the correct order. The aim was 
to estimate the recombination fraction r13 between M1 and 
M3. Parameters varied were the distortion model, distortion 
strength t, recombination fraction between M1 and M2 (r12)  
and between M2 and M3 (r23). Estimation with correc-
tion for distortion was performed using the EM algorithm 
presented in Cheng et  al. (1996), with 50 EM iterations. 
Uncorrected estimation was performed using the MLE for 
r12 and r13. This was obtained by a grid search, with 501 
equally spaced values for r13.

We generated data from the three models considered in 
Cheng et  al. (1996): gametic selection in model 1, which 
results in a viability ratio of 1 : 1 + t : t for genotypes 
a : h : b; gametic selection in model 2, which results in a 
viability ratio of 1 : 2t : t2; and zygotic selection in model 
3, with a ratio of 1 : 2 : t. We varied the level of distortion t 
with values 0.2, 0.6, and 1.0 under model 1, and values 0.3,  
1.15 and 2 under models 2 and 3. The recombination frac-
tions r12 and r23 had values 0.05, 0.275 and 0.5. For each set 
of models, we generated 1,000 replicates of F2 populations 
containing 300 individuals. The dominant founder allele 
was selected randomly for all three markers.

We performed similar simulations to assess the perfor-
mance of the RM estimator for a MAGIC population. Here 
we compared the RM estimator against numerical maxi-
mum likelihood using a two-dimensional grid search for 
the parameters r12 and r23. We generated 1,000 replicates of 

(14)E(tx,z) =
∑

f ∈F

|F|−1
Pf ,u(M1 = x, M3 = z).
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eight-parent MAGIC populations containing 2,000 individ-
uals, genotyped at three biallelic markers M1, M2 and M3,  
with M2 being an SDL. We varied three parameters: the 
recombination fraction between M1 and M2 (r12); the recom-
bination fraction between M2 and M3 (r23); and the propor-
tion of the population expected to carry the segregation dis-
tortion allele (p.A.). We considered all possible combinations 
of the values 0.05, 0.25, and 0.50 for the three parameters. 
For the distortion parameter this corresponds to 0.4, 2 and 4 
times as much inheritance of the distorted founder allele (A)  
as would be expected under Mendelian segregation. A set 
of 31 segregation patterns for founders at M1 and M3 were 
generated for each combination of parameters, with results 
averaged over segregation patterns. For M2, founder A car-
ried allele 1 and the other founders carried allele 0. Individu-
als were drawn from random funnels, but the same set of 
funnels was used for every simulated population. Uncor-
rected estimation was also performed using a numerical grid 
search to maximize the likelihood; computation of both the 
uncorrected and the RM estimators has been implemented 
in the R/mpMap package (Huang and George 2011).

Wheat MAGIC

We calculated the RM estimator described above for mark-
ers from the 9K SNP chip (Cavanagh et  al. 2013) geno-
typed on 1,743 inbred progeny from an eight-parent bread 
wheat MAGIC population. The eight parents (AC-Barrie, 
Alsen, Baxter, Pastor, Volcani, Westonia, Xiaoyan54, and 
Yitpi) were crossed in a total of 306 funnels out of the pos-
sible 315 funnels. The number of lines per funnel ranged 
from 1 to 17.

We focused on map construction for Chromosome 2B, 
as the parent Baxter is known to carry the rye introgres-
sion Sr36 (Tsilo et al. 2008; Huang et al. 2012). While this 
introgression has been previously mapped (Huang et  al. 
2012) no correction was made at that time for the observed 
distortion in distances between markers. All analyses were 
performed using R/mpMap (Huang and George 2011).

For Chromosome 2B, we first estimated recombination 
fractions without accounting for segregation distortion, 
using the function ‘mpestrf’ with default parameters. Mark-
ers were grouped using hierarchical clustering, and linkage 
groups aggregated interactively. Groups of markers cor-
responding to Chromosome 2B were identified based on 
previous mapping studies (Cavanagh et al. 2013). We then 
ordered markers with the function ‘mporder’, which aims 
to minimize the number of Anti-Robinson events among 
the matrix of recombination fraction estimates using the 
software package R/seriation (Hahsler et al. 2008).

Once a marker ordering was achieved, we used the func-
tion ‘computemap’ to estimate map positions. This converts 
the matrix R̂ of pairwise recombination fraction estimates 

to a matrix of genetic distances using the Haldane mapping 
function. The true matrix of genetic distances is unknown, 
but it must satisfy a large number of additivity constraints. 
For example, if we have three markers M1, M2 and M3 in 
the correct order and xij is the genetic distance from marker 
i to j, then x12 + x23 = x13. These constraints can be writ-
ten as a matrix equation of the form Ax̂ = f (R̂) where A is 
a known matrix, f  is a known function and x̂ is the vector 
of genetic distances between adjacent markers. We find an 
approximate solution for x̂ using non-linear least squares, 
and this determines the map positions of the markers.

Next, we chose markers that were believed to identify the 
translocation. These markers were all highly linked, with 
pairwise recombination fraction estimates <0.005, and were 
all highly distorted. The Chi squared statistic for distortion 
was over 140 for all these markers, giving a p value that was 
numerically equal to 0. All the chosen markers had a seg-
regation pattern that uniquely identified the Baxter founder. 
For 38 lines it was unclear whether the translocation was 
present or not; these lines were discarded. The recombi-
nation fractions for markers on 2B were then re-estimated 
using the RM estimator to correct for distortion. We then 
followed the same steps as above using ‘mporder’ and 
‘computemap’ to construct a corrected map.

Results

Simulation studies

Our simulations of F2 populations aimed to both assess the 
magnitude of the approximation made in construction of 
the RM estimator, and the performance of the estimator in 
comparison to other approaches. In all cases, the expecta-
tions E[ǫxz] were small. More detail can be found in “Simu-
lation of error terms” in Appendix.

We next compared the RM estimator against other 
approaches, including that which has no correction for dis-
tortion. For the F2 population our simulations show that 
some correction for distortion is clearly necessary. Figure 
1c shows the case where data was generated according to 
model 2, with distortion parameter t = 0.3. This was the 
case where the uncorrected estimation performed worst, 
with an uncorrected bias of 30  %. The EM algorithm 
approach outlined in Cheng et  al. (1996) outperformed 
the RM and uncorrected estimates in all cases. It is unbi-
ased and not shown in any figures. Note however that this 
approach carries a significant computational cost. We com-
pare the RM and uncorrected estimates on the basis of the 
mean square error (MSE), defined for an estimator θ̂  of θ as

MSE(θ̂) = E

[
(θ − θ̂ )2

]
.
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Fig. 1   Bias and mean squared error (MSE) of recombination frac-
tion estimates using the proposed robust M-estimator (RM) and the 
uncorrected MLE in the presence of segregation distortion for 1,000 
replicates of an F2 population of 300 individuals. Selected distortion 
scenarios are presented, with the suffix 1 denoting founder a being 
dominant at marker M2 and the suffix 2 denoting founder b being 

dominant. a Bias as a proportion of r13, under model 1 with t = 0.2. 
b Mean squared error under model 1 with t = 0.2. c Bias as a propor-
tion of r13, under model 2 with t = 0.3. d Mean squared error under 
model 2 with t = 0.3. e Bias as a proportion of r13, under model 3 
with t = 0.3. f Mean squared error under model 3 with t = 0.3
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For the F2 population we found the RM estimator to 
have mixed performance, which depended strongly on the 
dominant founder at the SDL and the strength of distortion. 
Where there was an improvement in proportional bias this 
was typically offset by an increase in variance, and vice 
versa. This resulted in only small to moderate changes in 
the MSE overall.

For model 1 (Fig. 1a, b) the performance of the uncor-
rected and RM estimators was essentially identical for 
t = 0.6 and t = 1.0. For t = 0.2 we observed a generally 
higher bias and variance for the RM estimator. The excep-
tion was the case where r12 = r23 = 0.05. In this case if 
founder a was dominant at M2 then the absolute bias was 
larger and the variance was smaller than for the uncorrected 
estimator, resulting in a slightly smaller MSE. If founder b 
was dominant at M2 then we observed a smaller absolute 
bias and higher variance for the RM estimator, also result-
ing in a smaller MSE.

For model 2 (Fig. 1b, c) the RM and uncorrected esti-
mators performed identically for t = 1.15 and t = 2.0. For 
t = 0.3 performance was also identical for small recombi-
nation fractions if founder a was dominant, although the 
uncorrected estimator performed slightly better for recom-
bination fractions close to 0.5. If founder b was dominant, 
the combination of a smaller absolute bias but correspond-
ingly higher variance resulted in MSE similar in size to that 
of the uncorrected estimator.

For model 3 the RM and uncorrected estimators per-
formed identically for t = 1.15 and t = 2.0. For t = 0.3 the 
bias of the RM estimator was larger than the bias of the 
uncorrected estimator, regardless of recombination frac-
tion. However, if founder a was dominant at M2, there was 
an offsetting decrease in the variance of the RM estimator, 
resulting in a moderate decrease in the MSE compared to 
the uncorrected estimator.

For the MAGIC population the performance gain in cor-
recting for segregation distortion was more clear, as uncor-
rected estimation showed considerable bias for tightly 
linked markers (Fig. 2).

Indeed, Fig. 2 illustrates the situation where distortion is 
least problematic. If the distorted founder allele is present 
at the SDL in 50 % of progeny, the bias of uncorrected esti-
mation increases to 80  % for tightly linked markers. The 
RM estimator performs slightly worse when the markers 
are unlinked. However in practice bias is a far greater prob-
lem for markers which are closely linked, as they will have 
the greatest impact on local ordering for map construction.

Wheat MAGIC

We first compared the uncorrected and corrected maps to 
each other on the basis of chromosome length. The length 
of the uncorrected map of Chromosome 2B is 470  cM, 

which is significantly longer than the estimated length in 
other maps (Cavanagh et  al. 2013). The procedure based 
on the RM estimator appears to produce more reason-
able lengths, resulting in a corrected chromosome size of 
335 cM (Cavanagh et al. 2013).

Both maps constructed from the MAGIC popula-
tion were also compared to a map constructed from the 
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Fig. 2   Bias in recombination fraction as a proportion of the true 
value r13, for estimates using three approaches—a multidimensional 
maximum likelihood estimator (MLE); the proposed robust M-esti-
mator (RM); and the uncorrected estimator. All estimates are made 
for an eight-parent MAGIC population of 2,000 individuals, with the 
distorted founder allele present in 25 % of progeny at the SDL
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Synthetic × Opata (SynOp) population which was also 
genotyped on the 9K SNP chip (Cavanagh et al. 2013). As 
this population does not contain the Sr36 introgression, we 
expect markers to be ordered with less bias; hence con-
flicts between marker positions may indicate errors in the 
MAGIC map.

Figure 3 compares the positions of the 428 markers 
mapped in both the SynOp and MAGIC populations to 
Chromosome 2B. Complete agreement between the maps 
with respect to order and position would result in a straight 
line along the diagonal. Differences in positions due to map 
expansion will result in angled lines; differences in order 
will result in points displaced from the line. The adjusted 
map shows good agreement with the SynOp map, with 
the possible exception of one marker. However, the unad-
justed map shows significant disagreement, with markers 
at the same position in the SynOp map commonly located 
150 cM apart in the MAGIC map.

Discussion

The accurate inclusion of distorted markers into the map-
ping process is important for several reasons. It has been 
shown that the presence of SDLs can have a positive effect 
on detection power in QTL mapping (Xu 2008; Zhang et al. 
2010). Additionally, these loci may have important biologi-
cal functions which are not detected if excluded from the 
genetic map. A number of SDL mapping approaches have 
been proposed, some of which jointly estimate segrega-
tion distortion effects and marker recombination fractions 
(Zhu et al. 2007), or map QTL and SDL jointly (Xu and Hu 
2009). These approaches require a known marker order-
ing and cannot be used independently of approaches such 
as those we have described. Additionally, where a large 
number of markers are available they require a very large 
number of parameters be estimated jointly using the EM 
algorithm.

We have presented here an estimator for recombina-
tion fractions in the presence of segregation distortion, and 
applied it to F2 and 8-parent MAGIC populations. These 
designs represent two different extremes. For an F2 popula-
tion, estimation of the recombination fraction r13 between 
codominant markers M1 and M3 is completely robust 
against distortion at M1 or M3, and no correction for distor-
tion needs to be made. If the distortion occurs at some other 
marker M2, then uncorrected estimation will be biased. If 
all three markers are dominant then the uncorrected MLE 
can be very biased, but the RM estimator does not exhibit 
a large increase in performance. Thus, there are relatively 
few situations in which the RM estimator is necessary in 
F2 populations; in general the uncorrected estimation will 
perform as well, with similar computational cost.

For the 8-parent MAGIC population, however, we notice 
considerable improvement using the RM estimator in cer-
tain situations. One particular situation in which we find 
that the uncorrected MLE has high proportional bias cor-
responds to specific combinations of founder genotypes 
for markers M1 and M3, which result in a low-information 
likelihood. In these cases, there is low certainty about esti-
mates of the true distance between markers, especially in 
the presence of segregation distortion. Including M2 in the 
estimation procedure increases the information content of 
the likelihood and hence improves precision in estimates. 
While this would in theory be true for other estimators, the 
notable aspect of the RM estimator is that it does so at no 
extra computational cost. Importantly, these situations do 
not occur in F2 populations, explaining the differences in 
performance.

We found that the EM algorithm approach proposed in 
Cheng et  al. (1996) is highly effective in F2 populations, 
and significantly outperformed both the RM and ML esti-
mators. However this approach has significant disadvan-
tages in modern studies. First, it requires a model of the 
type of selection (gametic, zygotic, etc.) occurring at the 
SDL, which may not be known a priori. Second, it assumes 
that the SDL lies between two flanking markers, which 
is potentially different from a model where the SDL lies 
to one side of both markers. The RM estimator does not 
require this assumption.

The third disadvantage is the computational burden: 
while individual applications of the EM algorithm are not 
overly time-consuming, it must be applied on the order of 
107 times for estimation of recombination fractions between 
all markers in a linkage group containing 5,000 markers. 
To deal with genotyping throughput of this magnitude or 
larger, such as that produced by genotyping-by-sequenc-
ing technology (Elshire et al. 2011), a more computation-
ally efficient approach is required. The RM estimator can 
be computed using a one-dimensional parametric sweep, 
and is also suitable for use on highly parallel processors 
such as Graphics Processing Units (GPUs). It can be com-
puted in an identical amount of time to the MLE from the 
undistorted probability model. The EM algorithm approach 
requires two numerical optimisations per iteration of the 
algorithm, and a number of iterations must be performed. 
The iterative nature of the algorithm means that it is more 
difficult to employ GPU acceleration.

For the F2 simulation study the EM algorithm was sig-
nificantly slower, with over 2 days of computation required. 
Applying the RM estimator to the same datasets required 
only 3 h. Both approaches were implemented in Mathemat-
ica, and neither implementation was highly optimised, so 
we consider this a valid comparison. The uncorrected esti-
mation using a grid search was implemented in the R sta-
tistical package, and required <2 min of computation time.  
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A similarly optimised version of the RM estimator would 
be equally fast, as the computations that must be performed 
are nearly identical.

The computational differences were more pronounced for 
the MAGIC population. For the MAGIC simulation study 
using multi-dimensional maximum likelihood, over a week 
of computing time was required. By contrast, the RM esti-
mator required only 6 min of computation. Both approaches 
for the MAGIC population were implemented in highly opti-
mised C code. One drawback of the RM estimator is that as 
only two markers are used in the model, some pairs of mark-
ers will be completely uninformative for the parameter of 
interest. Taking all the analysis in MAGIC simulation study 
together, this happened around 7 % of the time.

While our approach does not require either of the model 
assumptions made by the EM-algorithm approaches, we do 
assume some knowledge about the SDL. However, this is 
not difficult to satisfy in practice. Current high-density SNP 
chips allow for the placement of a marker at sub-centiMor-
gan distances, and we can reasonably expect the existence 
of a marker tightly linked to the SDL. In some cases such 
markers have been previously identified, such as stm773 for 
the Sr36 introgression in wheat (Tsilo et al. 2008).

If such a marker is unknown, we suggest the following 
procedure. First, group the markers by chromosome. In our 
experience this grouping is unambiguous, regardless of the 
presence of segregation distortion. Next compute recom-
bination fractions assuming no distortion and order the 
markers on each chromosome. A visual inspection of the 
ordered recombination fractions will suggest chromosomes 
where the ordered recombination fractions are biologically 
implausible. For these chromosomes perform a chi-squared 
goodness-of-fit test to assess whether the markers fol-
low the Mendelian segregation ratios. If a large number of 
apparently tightly linked markers are significantly distorted 
then this is evidence for segregation distortion. If these 
markers all have the same segregation pattern then this is 
further evidence for distortion and may have a biological 
interpretation. This procedure can identify distorted regions 
unambiguously; for our wheat MAGIC population the Chi 
squared test statistic for distortion is regularly above 200. 
For comparison, a value over 60 represents a p-value on 
the order of 10−15. Ability to correctly identify distorted 
regions depends primarily on the strength of distortion and 
the marker density.

Performance of the RM estimator on real data indicates 
it can make a substantial contribution to the accuracy of 
map construction. In practical applications we expect to 
see the greatest improvement for closely linked markers, 
which are common with high-density genotyping. Greater 
improvement was seen for the MAGIC population than the 
F2; again, this supports use of this estimator in high-den-
sity mapping, since the MAGIC populations have greater 

genetic resolution and diversity than biparental popula-
tions. By allowing the inclusion of segregation distortion 
loci in maps even with large number of markers, we antici-
pate better positioning of loci in the genome.

In conclusion, it is highly desirable to include dis-
torted markers in the map construction process. Doing so 
can improve map quality and avoid discarding markers of 
important biological significance. We propose a robust and 
computationally efficient estimator of recombination frac-
tion, which is more suitable for map construction using 
high-density SNP chips than traditional EM algorithm 
techniques. Further work is necessary to determine the best 
ways to integrate map construction and QTL analysis in the 
presence of segregation distortion, particularly for the situ-
ation of high-throughput genotyping.
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Appendix

Proof of Eq. 9

E(sxz) =
pxaz

4p.a.

+
pxhz

2p.h.

+
pxbz

4p.b.

+ E(ǫxz)

=
1

4
Pd(M1 = x, M3 = z|M2 = a)

+
1

2
Pd(M1 = x, M3 = z|M2 = h)

+
1

4
Pd(M1 = x, M3 = z|M2 = b) + E(ǫxz)

=
1

4
Pu(M1 = x, M3 = z|M2 = a)

+
1

2
Pu(M1 = x, M3 = z|M2 = h)

+
1

4
Pu(M1 = x, M3 = z|M2 = b) + E(ǫxz)

= Pu(M1 = x, M2 = a, M3 = z)

+ Pu(M1 = x, M2 = h, M3 = z)

+ Pu(M1 = x, M2 = b, M3 = z) + E(ǫxz)

= Pu(M1 = x, M3 = z) + E(ǫxz)
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Proof of Eq. 14

It is not true that

However if we take pf = |F|−1 we can rewrite

as

We now make the approximation that Pf ,u(M1 = x,

M3 = z|M2 = y) has the same value for all funnels when 
x, y and z are distinct. Similarly, assume that there is a 
unique value across all funnels for x = y, y �= z and another 
value for x �= y, y = z. Note that this holds exactly for 
r12 = r23 = 0 and r12 = r23 = 0.5, and it is always true that 
Pf ,u(M1 = x, M3 = x|M2 = x) is funnel-independent. If 
x �= A and z �= A, we now have

From our assumption about funnel independence this 
becomes

Here Pu refers to the approximate funnel-independent val-
ues. However cx, cy and cz are all exactly 1

7
, so this is equal to

Similar arguments can be made for the cases x = A, z = A, 
etc. Substituting this approximation back into Eq. 13 gives 
the desired result. Note that as we did not use the fact that 
M2 was between M1 and M3, these approximations are 
equally as valid if the marker order is M2, M1, M3.

Simulation of error terms

As the expectation and distribution of ǫxz from Sect.  2.2 
are analytically intractable, we characterized them through 
simulation. We considered the case of three dominant 

Pf ,d(M1 = x, M3 = z|M2 �= A) = Pf ,u(M1 = x, M3 = z|M2 �= A)

∑

f ∈F

|F|−1
Pf ,d(M1 = x, M3 = z|M2 �= A)

|F|−1
∑

f ∈F

∑

B≤y≤H

Pf ,u(M1 = x, M3 = z|M2 = y)Pf ,d(M2 = y|M2 �= A)

|F|−1




�

f ∈F

Pf ,u(M1 = x, M3 = z|M2 = x)Pf ,d(M2 = x|M2 �= A)

+
�

f ∈F

�

B≤y≤H

y �=x,y �=z

Pf ,u(M1 = x, M3 = z|M2 = y)Pf ,d(M2 = y|M2 �= A)

+
�

f ∈F

Pf ,u(M1 = x, M3 = z|M2 = z)Pf ,d(M2 = z|M2 �= A)





Pu(M1 = x, M3 = z|M2 = x)cx +
∑

y �=A

y �=x,y �=z

Pu(M1 = x, M3 = z|M2 = y)cy

+ Pu(M1 = x, M3 = z|M2 = z)cz

8

7
Pu(M1 = x, M2 �= y, M3 = z).

markers M1, M2 and M3. The recombination fractions r12 
and r23 took on values 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. The 
true genotypic probabilities p.a. and p.h. took on values 
1

10
, 2

10
, . . . , 8

10
, with the restriction that p.a. + p.h. ≤ 0.9.  

The last genotypic fraction p.b. had value 1 − p.a. − p.h..  
All eight possible combinations of dominant founders at 
the markers were considered. In total, 10,368 different sets 
of parameters were considered. For each set of parameters, 
30,000 F2 populations of 300 individuals were generated. 
For each population, the values ǫ00, ǫ01, ǫ10 and ǫ11 were 
calculated.

Figure 4 shows a histogram of the estimated values of 
E[ǫ00] across all the scenarios considered. Note that Fig. 4 
is not a histogram of a distribution, but it shows that the 
expectation was close to zero in every scenario considered. 
The behaviour of the other three expectations is similar. In 
considering whether it is reasonable to assume that ǫxz ≃ 0, 
it is therefore sufficient to examine the variance of ǫxz.

Table 1 lists the five scenarios for which the largest 
value of Var(ǫ01) was observed. These scenarios all involve 
extreme distortion. They also involve specific choices of 
dominant founders. For example, in the first scenario Eq. 
11 implies that

In this case p.1. = 1 − p.a. = 0.2, which is relatively small. 
So the difference in the second term can potentially be 
large, whereas the difference in the first term will tend to be 
small. Now consider the same scenario but with the domi-
nant founder at M2 being a. From Eq. 12, in this case

The difference in the first term will tend to be small, and the 
difference in the second will be potentially large. However 
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Fig. 4   Histogram of the values of E[ǫ00] for three dominant mark-
ers simulated in 30,000 F2 populations of size 300. For each popula-
tion different values of recombination fractions between each pair of 
markers (M1 and M2; M2 and M3) were generated from the range 0.05 
to 0.5, and true genotypic probabilities (p.a. and p.h.) were generated 
from the range 0.1 to 0.8
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it is now multiplied by a factor of 1
4
 rather than 3

4
, and as a 

result Var(ǫ01) is expected to be smaller in this case.
When applying the approximation ǫxz ≃ 0 we actually 

make four approximations simultaneously. The worst case 
for each individual approximation is not expected to be 
representative of the performance when actually applied to 
recombination fraction estimation. For example, in the first 
scenario in Table 1, the largest values of |ǫ00|, |ǫ10| and |ǫ11| 
observed across 30,000 populations were 0.0186, 0.0089 
and 0.11. In the specific population that gave a value of 
−0.297 for ǫ01, the corresponding values of the other error 
terms were 0.014, 0.0062 and −0.022. In general, we 
observed that scenarios with large values for one of the 
error terms have very small values for other terms. Hence 
for nearly all situations we expect the approximation to 
perform reasonably well.
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